

16.485: VNAV - Visual Navigation for Autonomous Vehicles

Luca Carlone

Lecture 24: SLAM II:
Factor Graphs
and Marginalization

Week	Dates	Lecture topic	Lab
1	Sep 8, 10	Introduction	Lab 1: Linux, C++, Git
2	Sep 13, 15, 17	3D Geometry	Lab 2: ROS
3	Sep 20, 22, 24	Geometric Control	Lab 3: 3D trajectory following
4	Sep 27, 29	Trajectory Optimization	Lab 4: 3D trajectory optimization
5	Oct 1, 4, 6	2D Computer Vision	Lab 5: feature detection
6	Oct 8, 13, 15	2-view Geometry and Minimal Solvers	Lab 6: object localization
7	Oct 18, 20, 22	Non-minimal Solvers and Visual Odometry	Lab 7: GTSAM
8	Oct 25, 27, 29	Place Recognition	Lab 8: ML for robotics
9	Nov 1, 3, 5	SLAM and Visual-Inertial Navigation	Lab 9: SLAM
10	Nov 8, 10, 12	Advanced Topics: Open Problems in Robot Perception	Final project
11	Nov 15, 17, 19	Advanced Topics: Robustness	Final project
12	Nov 22, 24, 29, Dec 1	Advanced Topics: Metric-Semantic Understanding and Learning	Final project
13	Nov 25-26	Thanksgiving Break	
14	Dec 3, 6, 8	Guest Lectures and Students Presentations	Final project

Today

- Recap: pose graph optimization + landmark-based SLAM
- Factor Graphs
- Marginalization

Factor Graphs for Robot Perception

Pose Graph Optimization

- Measurements: odometry + loop closures (relative poses)
- Variables: robot poses

Pose Graph Optimization

Pose Graph Optimization: Sparsity

Jacobian J

Hessian $\mathbf{J}^{\mathbf{T}} \mathbf{J}$

a.k.a.

Information Matrix of the estimate

Landmark-based SLAM

- Sequence of robot (camera) poses $\mathbf{T}_{1}, \mathbf{T}_{2}, \ldots, \mathbf{T}_{t} \in \mathrm{SE}(d)$
- Robot measures the relative pose between \mathbf{T}_{i} and \mathbf{T}_{i+1} (odometry)
- Robot measures the environment (e.g., point landmarks $\mathbf{p}_{i} \in \mathbb{R}^{d}$)

- Measurements: odometry + measurements of (projection, range, position, or others) of external landmarks
- Variables: robot poses and landmark positions

AEROASTRO

Landmark-based SLAM: Sparsity

Jacobian J

Hessian JTJ

Example of Hessian (sparsity) in BA

Credit: Lourakis and Argyros

Landmark-based SLAM: Example

https://www.youtube.com/watch?v=OdJ042prg_M

Some terminology

MAP is maximum a posteriori estimation
(MLE if no prior is available ["uninformative" prior])
courtesy of Cadena et al.

AEROASTRO

Other SLAM Problems

- Consider a visual-SLAM problem where we also want to estimate the camera calibration:

Problem: the projective measurements depend on (i) a pose, (ii) a 3D point, and (iii) the unknown calibration. We can no longer use a standard graph representation where measurements are (pairwise) edges

A General Model: Factor Graphs

- Bipartite graph describing measurements and variables in our SLAM problem:

Factor Graph

Factor Graph: Example

Fig. 3: SLAM as a factor graph: Blue circles denote robot poses at consecutive time steps (x_{1}, x_{2}, \ldots), green circles denote landmark positions $\left(l_{1}, l_{2}, \ldots\right)$, red circle denotes the variable associated with the intrinsic calibration parameters (K). Factors are shown as black squares: the label " u " marks factors corresponding to odometry constraints, " v " marks factors corresponding to camera observations, " c " denotes loop closures, and " p " denotes prior factors.

Factor Graph: Sparsity

- Sparsity is dictated by topology of the factor graph:

Jacobian J

Hessian $J^{T} \Sigma^{-1} J$

- Normal equations: $\left(\mathbf{J}^{\top} \Sigma^{-1} \mathbf{J}\right) \mathrm{d}=-\mathbf{J}^{\top} \Sigma^{-1} \mathbf{r}$

What if we only care about subset of variables?

- Normal equations: $\left(\mathbf{J}^{\top} \Sigma^{-1} \mathbf{J}\right) \mathrm{d}=-\mathbf{J}^{\top} \Sigma^{-1} \mathbf{r}$
- What if we only want to compute a subset of variables?
- $\mathbf{J}=\left[\begin{array}{ll}\mathbf{J}_{\mathrm{p}} & \mathbf{J}_{1}\end{array}\right]$, i.e., partial derivatives w.r.t. poses and w.r.t. landmarks
- Information matrix (LHS) blocks
$\begin{aligned} & \begin{array}{l}\text { Block structure } \\
\text { in the Information } \\
\text { Matrix }\end{array}\end{aligned} \mathbf{J}^{\top} \Sigma^{-1} \mathbf{J}=$
\(\left.\begin{array}{ll|l}\mathbf{J}_{\mathrm{p}}^{\top} \Sigma^{-1} \mathbf{J}_{\mathrm{p}} \& \mathbf{J}_{\mathrm{p}}^{\top} \Sigma^{-1} \mathbf{J}_{\mid}

\hline \mathbf{J}_{\mid}^{\top} \Sigma^{-1} \mathbf{J}_{\mathrm{p}} \& \mathbf{J}_{\mid}^{\top} \Sigma^{-1} \mathbf{J}_{\mid}\end{array}\right]=:\)| \mathbf{H}_{pp} |
| :--- |
| $\mathbf{H}_{\mathrm{pl}}^{\top}$ | $\mathbf{H}_{\mathrm{p} \mid}$

$\left.\qquad \begin{array}{cc}\mathbf{A} & \mathbf{B} \\
\mathbf{B}^{\top} & \mathbf{C}\end{array}\right]$

The Schur Complement (Linear Algebra Perspective)

Consider the following linear system with a symmetric coefficient matrix (doesn't have to be symmetric)

$$
\left[\begin{array}{cc}
\mathbf{A} & \mathbf{B} \\
\mathbf{B}^{\top} & \mathbf{C}
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathbf{y}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{w} \\
\mathbf{z}
\end{array}\right]
$$

If \mathbf{C} is invertible, pre-multiplying LHS/RHS by

$$
\left[\begin{array}{cc}
\mathbf{I} & -\mathbf{B} \mathbf{C}^{-1} \\
\mathbf{0} & \mathbf{I}
\end{array}\right]
$$

(i.e., subtracting $\mathrm{BC}^{-1} \times$ second equation from the first one) results in

$$
\left[\begin{array}{cc}
\mathbf{A}-\mathbf{B C}^{-1} \mathbf{B}^{\top} & \mathbf{0} \\
\mathbf{B}^{\top} & \mathbf{C}
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{w}-\mathbf{B D}^{-1} \mathbf{z} \\
\mathbf{z}
\end{array}\right]
$$

- Can solve the smaller system $\left(\mathbf{A}-\mathbf{B C}^{-1} \mathbf{B}^{\top}\right) \mathrm{x}=\mathbf{w}-\mathbf{B C}^{-1} \mathbf{z}$ for x
- We have thus eliminated y from the linear system
- If needed, y can be recovered by back-substituting x
- $\mathbf{A}-\mathbf{B C}^{-1} \mathbf{B}^{\top}$ is called the Schur complement of block \mathbf{C}

The Schur Complement Trick in BA / landmark-based SLAM

- Exploit the unique sparsity pattern of the information matrix to solve normal equations efficiently
- Normal equations $\left(\mathbf{J}^{\top} \Sigma^{-1} \mathbf{J}\right) \mathrm{d}=-\mathbf{J}^{\top} \Sigma^{-1} \mathbf{r}$ in block form

$$
\left[\begin{array}{c|c}
\mathbf{H}_{\mathrm{pp}} & \mathbf{H}_{\mathrm{pl}} \\
\hline \mathbf{H}_{\mathrm{pl}}^{\top} & \mathbf{H}_{\| l}
\end{array}\right]\left[\begin{array}{c}
\mathrm{d}_{\mathrm{p}} \\
\mathrm{~d}_{\mathrm{l}}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{b}_{\mathrm{p}} \\
\mathbf{b}_{l}
\end{array}\right]
$$

- Schur complement of the map ($\mathbf{H}_{\| \mid}$) block

$$
\left(\mathbf{H}_{\mathrm{pp}}-\mathbf{H}_{\mathrm{p} \mid} \mathbf{H}_{\|}^{-1} \mathbf{H}_{\mathrm{pl} \mid}^{\top}\right) \mathrm{d}_{\mathrm{p}}=\mathbf{b}_{\mathrm{p}}-\mathbf{H}_{\mathrm{p} \mid} \mathbf{H}_{\|}^{-1} \mathbf{b}_{\mid}
$$

- Schur complement may add non-zero off-diagonal blocks to \mathbf{H}_{pp}
- $\mathbf{H}_{\| \mid}$is block-diagonal \rightarrow easy to compute the Schur complement
- \# of landmarks 》\# of poses \rightarrow much smaller system
- We can first solve the reduced system for d_{p} ising sparse Cholesky/QR
- And then recover d_{j} by back-substitution

$$
\mathbf{H}_{\| \mid} \mathrm{d}_{\mid}=\mathbf{b}_{\mid}-\mathbf{H}_{\mathrm{p} \mid}^{\top} \mathrm{d}_{\mathrm{p}}
$$

- Once again, $\mathbf{H}_{\|}$is block-diagonal \rightarrow easy to solve

The Schur Complement (Probabilistic Perspective)

Review: Canonical Parametrization of Gaussians

$\mathcal{N}(\mu, \Sigma)$ can also be parametrized in terms of
(1) Information (precision) matrix $\Lambda \triangleq \Sigma^{-1}$
(2) Information vector $\eta \triangleq \Sigma^{-1} \mu$

We write $\mathcal{N}^{-1}(\eta, \Lambda) \equiv \mathcal{N}(\mu, \Sigma)$

- Suppose $p(\mathrm{x}, \mathrm{y})=\mathcal{N}^{-1}\left(\left[\begin{array}{c}\mathbf{w} \\ \mathbf{z}\end{array}\right],\left[\begin{array}{cc}\mathbf{A} & \mathbf{B} \\ \mathbf{B}^{\top} & \mathbf{C}\end{array}\right]\right)$
- One can marginalize out y to obtain $p(\mathrm{x})=\int_{-\infty}^{+\infty} p(\mathrm{x}, \mathrm{y}) d \mathrm{y}$
- Marginal distribution for $p(\mathrm{x})=\mathcal{N}^{-1}\left(\underline{\mathbf{w}-\mathbf{B C}^{-1} \mathbf{z}, \mathbf{A}-\mathbf{B C}^{-1} \mathbf{B}^{\top}}\right)$

Schur Complement \& Marginalization

- Many times we may wish to forget/eliminate unimportant variables (to focus resources on what matters to us, reduce size of linear system, save memory, etc)
- How to eliminate (forget) some variables "without" loss of information?
x Naïvely discarding variables and their measurements \rightarrow loss of information
\checkmark Proper way: Marginalize them out

Schur Complement \& Marginalization

- What does marginalization/Schur complement do to the sparsity pattern of information matrix?
- Eliminating (marginalizing out) a variable creates non-zero off-diagonals (called fill-in) in the information matrix between all of its "neighbours" (i.e., those variables that had a non-zero off-diagonal with the eliminated variable in the information matrix)
- In graph terms, elimination creates a clique between the neighbours of the eliminated node
\Rightarrow Loss of sparsity!

AEROASTRO

Marginalization: Example 1

Credit: Eustice et al.

Marginalization: Example 2

Marginalize ξ_{1}

Credit: Walter et al.

Smoothing and Filtering

MAP or Full smoothing (estimate entire trajectory and map)

- Many variables but
- Information matrix $\mathbf{J}^{\top} \Sigma^{-1} \mathbf{J}$ is sparse

Fixed-lag smoothing (estimate only variables in a time window)

- Use Schur complement to marginalize out old states (hence less variables)
- Information matrix after Schur complement is denser

Filtering (estimate only current pose and landmarks)

- Use Schur complement to marginalize out ALL old states (hence few variables)
- Information matrix after Schur complement is typically dense

