

16.485: VNAV - Visual Navigation for Autonomous Vehicles

Luca Carlone

Lecture 24: SLAM II: Factor Graphs and Marginalization

Week	Dates	Lecture topic	Lab
1	Sep 8, 10	Introduction	Lab 1: Linux, C++, Git
2	Sep 13, 15, 17	3D Geometry	Lab 2: ROS
3	Sep 20, 22, 24	Geometric Control	Lab 3: 3D trajectory following
4	Sep 27, 29	Trajectory Optimization	Lab 4: 3D trajectory optimization
5	Oct 1, 4, 6	2D Computer Vision	Lab 5: feature detection
6	Oct 8, 13, 15	2-view Geometry and Minimal Solvers	Lab 6: object localization
7	Oct 18, 20, 22	Non-minimal Solvers and Visual Odometry	Lab 7: GTSAM
8	Oct 25, 27, 29	Place Recognition	Lab 8: ML for robotics
9	Nov 1, 3, 5	SLAM and Visual-Inertial Navigation	Lab 9: SLAM
10	Nov 8, 10, 12	Advanced Topics: Open Problems in Robot Perception	Final project
11	Nov 15, 17, 19	Advanced Topics: Robustness	Final project
12	Nov 22, 24, 29, Dec 1	Advanced Topics: Metric-Semantic Understanding and Learning	Final project
13	Nov 25-26	Thanksgiving Break	
14	Dec 3, 6, 8	Guest Lectures and Students Presentations	Final project

Today

- **Recap**: pose graph optimization + landmark-based SLAM
- Factor Graphs
- Marginalization

Foundations and Trends[®] in Robotics Vol. 6, No. 1-2 (2017) 1–139 © 2017 F. Dellaert and M. Kaess DOI: 10.1561/2300000043

Factor Graphs for Robot Perception

Frank Dellaert Georgia Institute of Technology Michael Kaess Carnegie Mellon University

Pose Graph Optimization

- Measurements: odometry + loop closures (relative poses)
- Variables: robot poses

Pose Graph Optimization

Pose Graph Optimization: Sparsity

AEROASTRO

Pose Graph Optimization: Example

https://www.youtube.com/watch?v=KYvOqUB_odg

Landmark-based SLAM

- Sequence of robot (camera) poses $\mathbf{T}_1, \mathbf{T}_2, \ldots, \mathbf{T}_t \in SE(d)$
- Robot measures the relative pose between T_i and T_{i+1} (odometry)
- Robot measures the environment (e.g., point landmarks $\mathbf{p}_i \in \mathbb{R}^d$)

- **Measurements**: odometry + measurements of (projection, range, position, or others) of external landmarks
- Variables: robot poses and landmark positions

Landmark-based SLAM: Sparsity

$$\min_{\substack{\mathbf{T}_{t}, t=1,\dots,n\\ \mathbf{l}_{k}, k=1,\dots,K}} \sum_{t=1,\dots,n-1} \| (\mathbf{T}_{t}^{-1} \ \mathbf{T}_{t+1}) \boxminus \bar{\mathbf{T}}_{t+1}^{t} \|_{\mathbf{\Sigma}_{o}}^{2} + \sum_{k=1,\dots,K} \sum_{t\in\mathcal{S}_{k}} \| \bar{\mathbf{y}}_{k,t} - h_{i}(\mathbf{T}_{t}, \mathbf{l}_{k}) \|_{\mathbf{\Sigma}_{l}}^{2}$$

Example of Hessian (sparsity) in BA

Credit: Lourakis and Argyros

Landmark-based SLAM: Example

https://www.youtube.com/watch?v=OdJ042prg_M

Some terminology

MAP is maximum *a posteriori* estimation (MLE if no prior is available ["uninformative" prior])

courtesy of Cadena et al.

Other SLAM Problems

• Consider a visual-SLAM problem where we also want to estimate the camera calibration:

Problem: the projective measurements depend on (i) a pose, (ii) a 3D point, and (iii) the unknown calibration. We can no longer use a standard graph representation where measurements are (pairwise) edges

A General Model: Factor Graphs

Bipartite graph describing measurements and variables in our SLAM problem:
Eactor Graph

Factor Graph: Example

Fig. 3: SLAM as a factor graph: Blue circles denote robot poses at consecutive time steps (x_1, x_2, \ldots) , green circles denote landmark positions (l_1, l_2, \ldots) , red circle denotes the variable associated with the intrinsic calibration parameters (K). Factors are shown as black squares: the label "u" marks factors corresponding to odometry constraints, "v" marks factors corresponding to camera observations, "c" denotes loop closures, and "p" denotes prior factors.

Factor Graph: Sparsity

Sparsity is dictated by topology of the factor graph:

• Normal equations: $(\mathbf{J}^{\top} \Sigma^{-1} \mathbf{J}) \mathbf{d} = -\mathbf{J}^{\top} \Sigma^{-1} \mathbf{r}$

What if we only care about subset of variables?

• Normal equations: $(\mathbf{J}^{\top} \Sigma^{-1} \mathbf{J}) \mathbf{d} = -\mathbf{J}^{\top} \Sigma^{-1} \mathbf{r}$

- What if we only want to compute a subset of variables?
 - $\blacktriangleright ~ \mathbf{J} = \begin{bmatrix} \mathbf{J}_p & \mathbf{J}_l \end{bmatrix}, \text{ i.e., partial derivatives w.r.t. poses and w.r.t. landmarks}$
 - Information matrix (LHS) blocks

Block structure in the Information $\mathbf{J}^{\top} \Sigma^{-1} \mathbf{J} = \begin{bmatrix} \mathbf{J}_{p}^{\top} \Sigma^{-1} \mathbf{J}_{p} & \mathbf{J}_{p}^{\top} \Sigma^{-1} \mathbf{J}_{l} \\ \mathbf{J}_{l}^{\top} \Sigma^{-1} \mathbf{J}_{p} & \mathbf{J}_{l}^{\top} \Sigma^{-1} \mathbf{J}_{l} \end{bmatrix} =: \begin{bmatrix} \mathbf{H}_{pp} & \mathbf{H}_{pl} \\ \mathbf{H}_{pl}^{\top} & \mathbf{H}_{ll} \end{bmatrix}$ $\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^{\top} & \mathbf{C} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} = \begin{bmatrix} \mathbf{w} \\ \mathbf{z} \end{bmatrix}$

The Schur Complement (Linear Algebra Perspective)

Consider the following linear system with a symmetric coefficient matrix (doesn't have to be symmetric)

$$\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^\top & \mathbf{C} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} = \begin{bmatrix} \mathbf{w} \\ \mathbf{z} \end{bmatrix}$$

If ${\bf C}$ is invertible, pre-multiplying LHS/RHS by

$$egin{bmatrix} \mathbf{I} & -\mathbf{B}\mathbf{C}^{-1} \\ \mathbf{0} & \mathbf{I} \end{bmatrix}$$

(i.e., subtracting $\mathbf{BC}^{-1} \times$ second equation from the first one) results in

$$\begin{bmatrix} \mathbf{A} - \mathbf{B}\mathbf{C}^{-1}\mathbf{B}^\top & \mathbf{0} \\ \mathbf{B}^\top & \mathbf{C} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} = \begin{bmatrix} \mathbf{w} - \mathbf{B}\mathbf{D}^{-1}\mathbf{z} \\ \mathbf{z} \end{bmatrix}$$

- Can solve the smaller system $(\mathbf{A} \mathbf{B}\mathbf{C}^{-1}\mathbf{B}^{\top})\mathbf{x} = \mathbf{w} \mathbf{B}\mathbf{C}^{-1}\mathbf{z}$ for \mathbf{x}
- We have thus eliminated y from the linear system
- If needed, y can be recovered by back-substituting x
- $\mathbf{A} \mathbf{B}\mathbf{C}^{-1}\mathbf{B}^{\top}$ is called the Schur complement of block \mathbf{C}

The Schur Complement Trick in BA / landmark-based SLAM

- Exploit the unique sparsity pattern of the information matrix to solve normal equations efficiently
- Normal equations $(\mathbf{J}^{\top} \Sigma^{-1} \mathbf{J}) \mathbf{d} = -\mathbf{J}^{\top} \Sigma^{-1} \mathbf{r}$ in block form

$$\begin{bmatrix} \mathbf{H}_{pp} & \mathbf{H}_{pl} \\ \hline \mathbf{H}_{pl}^{\top} & \mathbf{H}_{ll} \end{bmatrix} \begin{bmatrix} \mathbf{d}_{p} \\ \mathbf{d}_{l} \end{bmatrix} = \begin{bmatrix} \mathbf{b}_{p} \\ \mathbf{b}_{l} \end{bmatrix}$$

► Schur complement of the map (H_I) block

$$(\mathbf{H}_{pp} - \mathbf{H}_{p|}\mathbf{H}_{||}^{-1}\mathbf{H}_{p|}^{\top})\,\mathbf{d}_{p} = \mathbf{b}_{p} - \mathbf{H}_{p|}\mathbf{H}_{||}^{-1}\mathbf{b}_{|}$$

- Schur complement may add non-zero off-diagonal blocks to H_{pp}
- ▶ $\mathbf{H}_{||}$ is block-diagonal \rightarrow easy to compute the Schur complement
- ▶ # of landmarks \gg # of poses \rightarrow much smaller system
- We can first solve the reduced system for d_p ising sparse Cholesky/QR
- And then recover d_l by back-substitution

$$\mathbf{H}_{||}\mathbf{d}_{|} = \mathbf{b}_{|} - \mathbf{H}_{\mathsf{p}|}^{\top}\mathbf{d}_{\mathsf{p}}$$

▶ Once again, $\mathbf{H}_{||}$ is block-diagonal \rightarrow easy to solve

The Schur Complement (Probabilistic Perspective)

Review: Canonical Parametrization of Gaussians

 $\mathcal{N}(\boldsymbol{\mu},\!\boldsymbol{\Sigma})$ can also be parametrized in terms of

- **1** Information (precision) matrix $\Lambda \triangleq \Sigma^{-1}$
- **2** Information vector $\eta \triangleq \Sigma^{-1}\mu$

We write $\mathcal{N}^{-1}(\eta, \Lambda) \equiv \mathcal{N}(\mu, \Sigma)$

• Suppose
$$p(\mathbf{x}, \mathbf{y}) = \mathcal{N}^{-1} \left(\begin{bmatrix} \mathbf{w} \\ \mathbf{z} \end{bmatrix}, \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^{\top} & \mathbf{C} \end{bmatrix} \right)$$

• One can marginalize out y to obtain $p(\mathbf{x}) = \int_{-\infty}^{+\infty} p(\mathbf{x}, \mathbf{y}) d\mathbf{y}$

• Marginal distribution for
$$p(\mathbf{x}) = \mathcal{N}^{-1} \Big(\mathbf{w} - \mathbf{B} \mathbf{C}^{-1} \mathbf{z}, \mathbf{A} - \mathbf{B} \mathbf{C}^{-1} \mathbf{B}^{\top} \Big)$$

Schur complement

Schur Complement & Marginalization

- Many times we may wish to forget/eliminate unimportant variables (to focus resources on what matters to us, reduce size of linear system, save memory, etc)
- How to eliminate (forget) some variables "without" loss of information?
- imes Naïvely discarding variables and their measurements ightarrow loss of information
- Proper way: Marginalize them out

Schur Complement & Marginalization

- What does marginalization/Schur complement do to the sparsity pattern of information matrix?
- Eliminating (marginalizing out) a variable creates non-zero off-diagonals (called fill-in) in the information matrix between all of its "neighbours" (i.e., those variables that had a non-zero off-diagonal with the eliminated variable in the information matrix)
- In graph terms, elimination creates a clique between the neighbours of the eliminated node
- \Rightarrow Loss of sparsity!

Marginalization: Example 1

Credit: Eustice et al.

Marginalization: Example 2

Marginalize ξ_1

Credit: Walter et al.

Smoothing and Filtering

MAP or Full smoothing (estimate entire trajectory and map)

- Many variables but
- Information matrix $\mathbf{J}^{\top} \Sigma^{-1} \mathbf{J}$ is sparse

Fixed-lag smoothing (estimate only variables in a time window)

- Use Schur complement to marginalize out old states (hence less variables)
- Information matrix after Schur complement is denser

Filtering (estimate only current pose and landmarks)

- Use Schur complement to marginalize out ALL old states (hence few variables)
- Information matrix after Schur complement is typically dense

Kalman filter, Extended Kalman Filter

